

OLYTECH

Peter the Great St. Petersburg Polytechnic University

Motivation

- ☐ **Jet-quenching** (energy loss of high-energy partons) one of the evidences of sQGP formation in central heavy-ion collisions
- ☐ Jet quenching results in suppressed production of leading hadrons from fragmentation of hard partons
- ☐ Studied by measuring nuclear modification factors:

$$R_{\scriptscriptstyle AA} = rac{1}{N_{\scriptscriptstyle coll}} \cdot rac{dN_{\scriptscriptstyle AA}/dp_{\scriptscriptstyle T}}{dN_{\scriptscriptstyle pp}/dp_{\scriptscriptstyle T}}$$

- □ Leading hadrons are used as proxy for jets:
 - \Box π^0 meson:
 - ✓ copiously produced \rightarrow measurable at high p_T
 - **η** meson:
 - ✓ hidden strangeness → hadron suppression as a function of flavor and mass

Motivation

- ☐ Studying **different** heavy-ion collision systems:
 - ✓ dependence of parton energy loss on energy density and nuclei overlap geometry → better discrimination between various theoretical models and understanding of parton energy loss mechanisms

☐ Available A+A collisions at RHIC:

A+A	Au+Au	Cu+Cu	Cu+Au	U+U
√s _{NN} , GeV	7.7, 9.2, 14.6, 19.2, 19.6, 27, 39, 62.4, 130, 200	22.4, 62.4, 200	200	193

- ✓ first asymmetric heavy-ion collision system
- ✓ different overlap geometry compared to symmetric systems

- ✓ the largest heavy ion collision system
- ✓ the largest energy density in central collisions

Analysis is progressing, not finished yet

Outline

- ☐ PHENIX detector
- ☐ Neutral pion and eta meson reconstruction
- \Box p_T spectra and R_{AA} in Cu+Au
- ☐ Comparison with jet results in Cu+Au
- ☐ Comparison with symmetric systems

PHENIX Detector

- Beam-Beam Counters: vertex and centrality classifications
- ☐ Electromagnetic Calorimeter (PbSc/PbGl):
 - \checkmark reconstruction of γ-clusters from π^0 →γγ and η→γγ decays
 - ✓ energy resolution: **PbSc** $\delta E/E=2.1\% \oplus 8.1\%/\sqrt{E}$, **PbGl** $\delta E/E=0.8\% \oplus 5.9\%/\sqrt{E}$
 - ✓ online trigger for events with high- p_T clusters → larger sampled statistics

Analysis info

- \square π^0 and η are reconstructed by combining pairs of γ clusters in the EMCal
- Combinatorial BG is estimated using mixed-event technique and subtracted
- \blacksquare π^0 peak is better pronounced because of:
 - ✓ higher production rate and reconstruction efficiency
 - ✓ larger branching: BR($\pi^0 \rightarrow \gamma \gamma$) = 0.998, BR($\eta \rightarrow \gamma \gamma$) = 0.39
 - ✓ smaller width: $\sigma(\pi^0) \sim 10 \text{ MeV/c}^2$, $\sigma(\eta) \sim 30 \text{ MeV/c}^2$

Analysis info

- □ Reconstruction efficiency → correction for detector effects and acceptance
 - \square π^0 meson:
 - ✓ reliably identified with good S/B ratio → relatively small uncertainties
 - ✓ cluster merging in PbSc at high p_T
 - **η** meson:
 - ✓ does not suffer from cluster merging effect → well controlled systematic uncertainty at high p_T
- Measurements are carried out separately in PbSc and PbGl → comparison of results is an important cross check
- ☐ Final results are averaging of PbSc and PbGl spectra with weights defined by uncorrelated stat. and syst. uncertainties

π⁰ spectra in Cu+Au

■Measured in a wide p_T range: up to 20 GeV/c in central collisions and semi-central collisions, and up to 16 GeV/c in peripheral

η spectra in Cu+Au

☐ Measured up to 20 GeV/c in MinBias, 18 GeV/c in central and semi-central collisions, and up to 12 GeV/c in peripheral

η/π⁰ ratios in Cu+Au

PHENIX [Phys.Rev. C75, 024909 (2007)] CCRS [Phys. Lett. B 55, 232 (1975)]

π^0 and η R_{AA} in Cu+Au: centrality dependence

- □ R_{AA} **for** π⁰ and η show good agreement, similar to that in Au+Au
- In **central** and **semi-central** Cu+Au collisions π⁰ and η production is suppressed
- ☐ In **peripheral** Cu+Au collisions observe a hint of enhancement

Comparison with jets R_{AA} in Cu+Au

 \square π^0 , η and jets show similar centrality dependence of R_{AA}

π^0 R_{AA} in Cu+Au, Au+Au and Cu+Cu

Phys. Rev. Lett. 101, 232301 Phys. Rev. Lett. 101, 162301

- \Box In **central** and **semi-central Cu+Au** collisions π^0 yields are suppressed as in **Cu+Cu** and **Au+Au** at similar N_{part}:
 - \checkmark π^0 production depends on the size of the nuclear overlap, but not on it's shape
- \Box In **peripheral Cu+Au** collisions π^0 yields show a hint on enhancement while in Au+Au suppression, Cu+Cu is in between

<t<sub>ab></t<sub>	central	semi-central	peripheral
Au+Au	8.9±0.7	2.9±0.3	0.12±0.03
Cu+Cu	-	4.4±0.4	0.12±0.02
Cu+Au	8.9±0.6	3.1±0.2	0.18±0.04

η R_{ΔΔ} in Cu+Au and Au+Au

 \Box At high p_T production of η in Cu+Au is suppressed in the same way as in Au+Au at similar N_{part}

Summary

- \Box PHENIX has measured p_T spectra and nuclear modification factors for π^0 and η in Cu+Au collisions at 200 GeV
- $\square R_{AA}$ factors for π^0 and η are consistent within uncertainties at all momenta and centralities
- \Box In central and semi-central Cu+Au collisions production of π^0 and η is suppressed in the same way as in Au+Au and Cu+Cu at similar N_{part}:
 - ✓ the suppression level is dependent on overlap size, not on its geometry
 - ✓ a hint of enhancement is observed in peripheral Cu+Au collisions